์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๊ฐœ์ธ ๋”ฅ๋Ÿฌ๋‹ ์„œ๋ฒ„ ๋งŒ๋“ค๊ธฐ ! (3) with Window10, Pytorch
ยท
๐Ÿ Python/Deep Learning
์•ˆ๋…•ํ•˜์„ธ์š”. ๋งŒ์•ฝ ์—ฌ๊ธฐ๊นŒ์ง€ ๋”ฐ๋ผ ์˜ค์…จ๋‹ค๋ฉด 90% ์ •๋„ ์„ฑ๊ณต์ž…๋‹ˆ๋‹ค. ๋‚˜๋จธ์ง€ 10%๋Š” Pytorch๋งŒ ์„ค์น˜ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค. ๊ต‰์žฅํžˆ ๊ฐ„๋‹จํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜ Pytorch ๊ณต์‹ ์‚ฌ์ดํŠธ๋ฅผ ๋“ค์–ด ๊ฐ‘๋‹ˆ๋‹ค. https://pytorch.org/ PyTorch An open source machine learning framework that accelerates the path from research prototyping to production deployment. pytorch.org ์•„๋ž˜๋กœ ์ญ‰ ๋‚ด๋ฆฌ์‹œ๋ฉด, ์œ„ ์‚ฌ์ง„์ฒ˜๋Ÿผ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ Run this Command๋ฅผ ๊ทธ๋Œ€๋กœ ๋ณต๋ถ™ํ•ด์„œ ์„ค์น˜ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค. Pytorch : 1.9 OS : Window10 Package : Anaconda Language : Python Com..
์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๊ฐœ์ธ ๋”ฅ๋Ÿฌ๋‹ ์„œ๋ฒ„ ๋งŒ๋“ค๊ธฐ ! (2) with Window10, Pytorch
ยท
๐Ÿ Python/Deep Learning
์•ˆ๋…•ํ•˜์„ธ์š”. ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๊ฐœ์ธ ๋”ฅ๋Ÿฌ๋‹ ์„œ๋ฒ„ ๋งŒ๋“ค๊ธฐ 2ํŽธ์ž…๋‹ˆ๋‹ค. ์ด๋ฒˆ ๊ธ€์€ ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์„ ์ข€ ๋” ์œ ์šฉํ•˜๊ณ  ๋ณด๊ธฐ ์ข‹๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•œ ํŽธ์ž…๋‹ˆ๋‹ค. ๊ตณ์ด ์•ˆ ํ•˜์‹œ๊ณ  ๋„˜์–ด๊ฐ€์…”๋„ ๋ฌด๋ฐฉํ•ฉ๋‹ˆ๋‹ค. ~ 1. ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ํ…Œ๋งˆ ~ ์ €๋Š” ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๊ธฐ๋ณธ ํ…Œ๋งˆ๋ฅผ ๋ณ„๋กœ ์ข‹์•„ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ˜„์žฌ ์ œ๊ฐ€ ๋‹ค๋‹ˆ๊ณ  ์žˆ๋Š” ์—ฐ๊ตฌ์‹ค์€ ์ •๋ถ€์—์„œ ์ง€์›ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹ ์„œ๋ฒ„๋ฅผ ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์œผ๋กœ ์ด์šฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ €๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์—, ๊ธฐ๋ณธ ํ…Œ๋งˆ๋กœ ๋’€์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด ๋”ฅ๋Ÿฌ๋‹ ์„œ๋ฒ„๋Š” ์˜ค๋กœ์ง€ ์ €๋งŒ์„ ์œ„ํ•œ ์„œ๋ฒ„์ด๊ธฐ ๋•Œ๋ฌธ์— ํ…Œ๋งˆ๋ฅผ ๋ฐ”๊พธ๊ฒ ์Šต๋‹ˆ๋‹ค. anaconda prompt๋ฅผ ๋“ค์–ด๊ฐ€ pip install jupyterthemes ๋ฅผ ์ž…๋ ฅํ•ด ํ…Œ๋งˆ ํŒจํ‚ค์ง€๋ฅผ ์„ค์น˜ํ•ฉ๋‹ˆ๋‹ค. pip install jupyterthemes # ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ํ…Œ๋งˆ ํŒจํ‚ค์ง€ ..
์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๊ฐœ์ธ ๋”ฅ๋Ÿฌ๋‹ ์„œ๋ฒ„ ๋งŒ๋“ค๊ธฐ ! (1) with Window10, Pytorch
ยท
๐Ÿ Python/Deep Learning
์ด๋ฒˆ์— ์ปดํ“จํ„ฐ๋ฅผ ๋งž์ถ”๋ฉด์„œ ๊ทธ๋ž˜ํ”ฝ์นด๋“œ RTX 2060 super๋ฅผ ๊ตฌ๋งคํ–ˆ์Šต๋‹ˆ๋‹ค. ์ €๋งŒ์˜ ๋”ฅ๋Ÿฌ๋‹ ์„œ๋ฒ„๋ฅผ ๋งŒ๋“ค์–ด ๋†“์œผ๋ฉด ์–ด๋””์„œ๋“  ์•ผ์™ธ์—์„œ ๋…ธํŠธ๋ถ์œผ๋กœ ๊ฐ€๋ณ๊ฒŒ ์ž‘์—…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ( ์–ผ๋งˆ๋‚˜ ์ž‘์—…์„ ํ• ์ง€ ๋ชจ๋ฅด์ง€๋งŒ, ์—†๋Š” ๊ฒƒ๋ณด๋‹จ ๋‚˜์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ) ์ฒœ์ฒœํžˆ ๋”ฐ๋ผ์˜ค์‹œ๋ฉด ๋ˆ„๊ตฌ๋‚˜ ๊ฐ„๋‹จํžˆ ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์„ ์ด์šฉํ•ด ์„œ๋ฒ„๋ฅผ ์—ด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ~ 1. ANACONDA ์„ค์น˜ ~ ์šฐ์„ , ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์„ ์„ค์น˜ํ•ฉ๋‹ˆ๋‹ค. https://www.anaconda.com/products/individual Anaconda | Individual Edition Anaconda's open-source Individual Edition is the easiest way to perform Python/R data science and machin..
[ํŒŒ์ด์ฌ] Low, High, Band Pass filter๋ฅผ ์ด์šฉํ•œ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ, FFT ๋ณ€ํ™˜์œผ๋กœ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ ํ™•์ธ.
ยท
๐Ÿ Python/Application
์•ˆ๋…•ํ•˜์„ธ์š”. Low Pass Filter, High Pass Filter, Band Pass Filter๋ฅผ ์ด์šฉํ•œ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ์™€ FFT ๋ณ€ํ™˜์œผ๋กœ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ํ•„ํ„ฐ๊ฐ€ ์ œ๋Œ€๋กœ ๋™์ž‘ํ–ˆ๋Š”์ง€ ํ™•์ธํ•˜๋Š” ๊ฒƒ๊นŒ์ง€ ํŒŒ์ด์ฌ์œผ๋กœ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค. from scipy import signal import matplotlib.pyplot as plt import numpy as np import scipy.io import os mat_file = scipy.io.loadmat('signal1.mat') (file_path, file_id) = os.path.split('signal1.mat') # file path, file name fs = 1024 # sample rate order = 10 # order cut_off_fr..
[๋”ฅ๋Ÿฌ๋‹] Pytorch. Target n is out of bounds.
ยท
๐Ÿ Python/Deep Learning
์•ˆ๋…•ํ•˜์„ธ์š”. Deep Learning์€ ๋Œ€ํ‘œ์ ์œผ๋กœ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๊ฐ€ ์žˆ์œผ๋ฉฐ, CNN์˜ ํŠœํ† ๋ฆฌ์–ผ์€ MNIST, CIFAR10 ๋ถ„๋ฅ˜๋กœ ๊ฐ€์žฅ ๋งŽ์ด ์†Œ๊ฐœ๋ฉ๋‹ˆ๋‹ค. ์ด์ง„ ๋ถ„๋ฅ˜๋Š” Sigmoid๋ฅผ, ๊ทธ ์ด์ƒ์˜ ๋‹ค์ค‘ ๋ถ„๋ฅ˜๋Š” Softmax๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, Softmax๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด One-hot encoding์„ ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. Sotfmax์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ ์€ ๊ฐ Class ๊ฐ„์˜ Probabilities(ํ™•๋ฅ )์˜ ํ•ฉ์ด '1'์ž…๋‹ˆ๋‹ค. ์ •๋‹ต Class๊ฐ€ 1์— ๊ฐ€๊นŒ์›Œ์ง€๋ฉด, ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์˜ค๋‹ต์ธ Class์˜ Probabilities๋Š” 0์— ๊ฐ€๊นŒ์›Œ์ง€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ Pytorch๋Š” One-hot encoding์„ ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. Pytorch ๊ฐœ๋ฐœ์ž๋“ค์ด ์ตœ๋Œ€ํ•œ ์‚ฌ๋žŒ ์นœํ™”์ ์œผ๋กœ ๊ฐœ๋ฐœ์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ๋” ๋ฐฐ๋ ค๋ฅผ ํ•œ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด, Ta..
[๋”ฅ๋Ÿฌ๋‹] ResNet - Residual Block ์‰ฝ๊ฒŒ์ดํ•ดํ•˜๊ธฐ! (Pytorch ๊ตฌํ˜„)
ยท
๐Ÿ Python/Deep Learning
์•ˆ๋…•ํ•˜์„ธ์š”. Plain Network(๋‹จ์ˆœํžˆ Layer์„ ๊นŠ๊ฒŒ ์Œ“์Œ)์—์„œ ๋ฐœ์ƒํ•˜๋Š” Vanishing Gradient(๊ธฐ์šธ๊ธฐ ์†Œ์‹ค), Overfitting(๊ณผ์ ํ•ฉ) ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ReLU, Batch Nomalization ๋“ฑ ๋งŽ์€ ๊ธฐ๋ฒ•์ด ์žˆ์Šต๋‹ˆ๋‹ค. ILSVRC ๋Œ€ํšŒ์—์„œ 2015๋…„, ์ฒ˜์Œ์œผ๋กœ Human Recognition๋ณด๋‹ค ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ ๊ฒƒ์ด ResNet์ž…๋‹ˆ๋‹ค. ๊ทธ ์œ„์šฉ์€ ๋ฌด์ง€๋ง‰์ง€ํ•œ ๋…ผ๋ฌธ ์ธ์šฉ ์ˆ˜๋กœ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ResNet์€ ๋”ฅ๋Ÿฌ๋‹ ์ด๋ฏธ์ง€ ๋ถ„์•ผ์—์„œ ๋ฐ”์ด๋ธ”๋กœ ํ†ตํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Plain Network๋Š” ๋‹จ์ˆœํžˆ Convolution ์—ฐ์‚ฐ์„ ๋‹จ์ˆœํžˆ ์Œ“๋Š”๋‹ค๋ฉด, ResNet์€ Block๋‹จ์œ„๋กœ Parameter์„ ์ „๋‹ฌํ•˜๊ธฐ ์ „์— ์ด์ „์˜ ๊ฐ’์„ ๋”ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. F(x) : w..
[๋ฌด์„  ํ†ต์‹ ] UWB LOS/NLOS Classification Using Deep Learning Method (2)
ยท
๐Ÿ Python/Deep Learning
์•ˆ๋…•ํ•˜์„ธ์š”. WB LOS/NLOS Classification Using Deep Learning Method(1)์—์„œ UWB CIR Dataset์„ ์ƒ์„ฑํ•˜์˜€๋‹ค๋ฉด, 2ํŽธ์œผ๋กœ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ CNN_LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ์•ฝ๊ฐ„ ๋ณ€ํ˜•ํ•˜์—ฌ ๊ตฌ์„ฑํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. coding-yoon.tistory.com/138 [๋ฌด์„  ํ†ต์‹ ] UWB LOS/NLOS Classification Using Deep Learning Method (1) ์•ˆ๋…•ํ•˜์„ธ์š”. ์˜ค๋Š˜์€ Indoor Positioning์—์„œ [cm]๋‹จ์œ„์˜ ์˜ค์ฐจ๋ฅผ ๋‚ด๋Š” UWB ๊ด€๋ จ ๋…ผ๋ฌธ์— ์ด์•ผ๊ธฐํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. coding-yoon.tistory.com/136?category=910542 [๋ฌด์„  ํ†ต์‹ ] Bluetooth Low Energy(BLE) 1. Physical Layer.. ..
[ํ”„๋กœ์ ํŠธ]Pandas Dataframe์„ ์ด์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •
ยท
๐Ÿ Python/Project
ํ˜„์žฌ ํด๋” ๊ฒฝ๋กœ ๊ฐ ํด๋”์—๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ์ „์ฒ˜๋ฆฌ ๋˜์ง€ ์•Š์€ CSV๊ฐ€ ์กด์žฌํ•œ๋‹ค. [JS01-210210_222834_p9_๊ณ ์ •, JS02-210210_222841_p9๊ณ ์ •, JS03-210210_222859_p9_๊ณ ์ •]๊ณผ ๊ฐ™์ด ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„์„ ๋ณ‘ํ•ฉํ•˜๊ณ , ๋ถ„์„์— ์•Œ๋งž๊ฒŒ ์ „์ฒ˜๋ฆฌ๋ฅผ ํ•˜๋Š” ๊ณผ์ •์„ ๋ณด์—ฌ์ค€๋‹ค. ์•„๋ž˜๋Š” ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋กœ ์ค‘๊ฐ„์— ๋นˆ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ณด์ด๊ณ , ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์ด ํ•„์š”ํ•œ ์›๋ณธ ๋ฐ์ดํ„ฐ์ด๋‹ค. ์ด์ œ๋ถ€ํ„ฐ Pandas๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ ๋ถ„์„์— ์•Œ๋งž๊ฒŒ ์ „์ฒ˜๋ฆฌ๋ฅผ ํ•  ๊ฒƒ์ด๋‹ค. (์œ„ preprocessing data๊ฐ€ ์ตœ์ข… ๋ชฉํ‘œ ๋ฐ์ดํ„ฐ) * Section 1 * 0. ๋ชจ๋“  CSV๋ฅผ ๋ถˆ๋Ÿฌ์˜จ๋‹ค. 1. Null/NaN(๊ฒฐ์†) ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐํ•œ๋‹ค. ex) (df : dataframe) df.isna.sum() ๋ฅผ ํ†ตํ•ด์„œ ๊ฒฐ์†๋ฐ์ดํ„ฐ๋ฅผ ํŒŒ..
[Pytorch] RNN์—์„œ Tanh๋ง๊ณ  Sigmoid๋‚˜ ReLU๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์•ˆ๋ ๊นŒ?
ยท
๐Ÿ Python/Deep Learning
์•ˆ๋…•ํ•˜์„ธ์š”. ์˜ค๋Š˜์€ RNN์„ Pytorch๋กœ ์ง์ ‘ ๊ตฌํ˜„ํ•ด๋ณด๊ณ , Tanh(hyperbolic tangent) ๋Œ€์‹ , Sigmoid๋‚˜ ReLU๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ์‹คํ—˜์„ ํ•œ ๋ฒˆ ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. www.youtube.com/watch?v=tlyzfIYvMWE&list=PLSAJwo7mw8jn8iaXwT4MqLbZnS-LJwnBd&index=26 ์ œ๊ฐ€ Pytorch๋ฅผ ์ฒ˜์Œ ๊ณต๋ถ€ํ•  ๋•Œ ์œ„ ์˜์ƒ์„ ๋งŽ์ด ์ฐธ๊ณ  ํ–ˆ์Šต๋‹ˆ๋‹ค. Pytorch๋ฅผ ์ฒ˜์Œ ๊ณต๋ถ€ํ•˜์‹œ๋Š” ๋ถ„์ด์‹œ๋ผ๋ฉด, ์œ„ ๋”ฅ๋Ÿฌ๋‹ ํ™€๋กœ์„œ๊ธฐ Pytorch Kist ์˜์ƒ์„ ๋ณด์‹œ๋Š” ๊ฑธ ์ถ”์ฒœ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์ž๋ฃŒ๋„ ์•„๋‚Œ์—†์ด GIt์— ์˜ฌ๋ผ์™€ ์žˆ๊ณ , ๋ผ์ด๋ธŒ ์ฝ”๋”ฉ์„ ํ•˜๋ฉด์„œ ์ˆ˜์—…์ด ์ง„ํ–‰๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ ‘๊ทผํ•˜๋Š” ๋…ธํ•˜์šฐ๋ฅผ ๊ธฐ๋ฅผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ์ฝ”๋“œ๋Š” ์œ„ ์˜์ƒ GIthub์˜ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ •ํ•œ ๋‚ด..
[Pytorch] LSTM์„ ์ด์šฉํ•œ ์‚ผ์„ฑ์ „์ž ์ฃผ๊ฐ€ ์˜ˆ์ธกํ•˜๊ธฐ
ยท
๐Ÿ Python/Deep Learning
์•ˆ๋…•ํ•˜์„ธ์š”. ์˜ค๋Š˜์€ LSTM์„ ์ด์šฉํ•ด์„œ ์‚ผ์„ฑ์ „์ž ์ฃผ๊ฐ€๋ฅผ ์˜ˆ์ธกํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ํฐ Dataset์€ ๋”ฐ๋กœ ํ•„์š”ํ•˜์ง€ ์•Š์œผ๋‹ˆ ๋ถ€๋‹ด ๊ฐ–์ง€ ์•Š๊ณ  ํ•˜์‹œ๋ฉด ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” ๋ณธ๋ฌธ ๊ธ€์ž…๋‹ˆ๋‹ค. cnvrg.io/pytorch-lstm/?gclid=Cj0KCQiA6t6ABhDMARIsAONIYyxsIXn6G6EcMLhGnPDxnsKiv3zLU49TRMxsyTPXZmOV3E-Hh4xeI2EaAugLEALw_wcB LSTM์ด ์–ด๋–ป๊ฒŒ ๋™์ž‘์„ ํ•˜๋Š”์ง€ ์ž์„ธํžˆ ์•„์‹œ๊ณ  ์‹ถ์œผ์‹œ๋ฉด ์•„๋ž˜ ๋ธ”๋กœ๊ทธ๋ฅผ ์ถ”์ฒœ๋“œ๋ฆฝ๋‹ˆ๋‹ค. dgkim5360.tistory.com/entry/understanding-long-short-term-memory-lstm-kr Long Short-Term Memory (LSTM) ์ดํ•ดํ•˜๊ธฐ ์ด ๊ธ€์€ Christopher Olah..
18์ง„์ˆ˜
'๐Ÿ Python' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (2 Page)